(D) The t-Bu(Me₃Si) $\dot{C}CH(SiMe_3)_2$ radical, 2, was prepared by photolysis of t-BuC=CH, Me₃SiH, and t-BuOO-t-Bu (1:2:4 v/v). At 50° the half-life of 3 \times 10^{-6} M 2 was 23 hr. Storage of a much more concentrated solution of 2 for many hours at 50° left a residue of 1 (about 3% based on the initial 2).

$$Me_{3}Si + t \cdot BuC = CH \xrightarrow{\sim 97\%} t \cdot Bu\dot{C} = CHSiMe_{3} \xrightarrow{2Me_{3}Si} 2$$

$$Me_{3}Si(t \cdot Bu)C = \dot{C}H \longrightarrow t \cdot Bu \cdot + Me_{3}SiC = CH \xrightarrow{3Me_{3}Si} 1$$

The $(t-Bu)_2$ CCH(SiMe₃)₂ radical, 3, was generated by $Me_3Si \cdot addition to (t-Bu)_2C = CH_2 via the intermediate$ $(t-Bu)_2$ CCH₂SiMe₃ radical² and by Me₃Si · addition to (t-Bu)₂C=CH-t-Bu (presumably via the (t-Bu)₂CCH-(t-Bu)SiMe₃ radical which was too short lived to be positively identified). The latter method of preparation gave 3 which, at concentrations in the range 2 \times 10^{-4} to 2 \times 10⁻⁵ M, decayed with first-order kinetics and had a half-life of 2.3 hr at 50°.

$$Me_{3}Si + (t - Bu)_{2}C \Longrightarrow CH_{2} \longrightarrow (t - Bu)_{2}CCH_{2}SiMe_{3}$$

$$(t - Bu)_{2}C \Longrightarrow CHSiMe_{3} \xrightarrow{Me_{3}Si} 3$$

$$\int -(t - Bu)_{2}C \Longrightarrow CH_{2}R_{2} \longrightarrow (t - Bu)_{2}C$$

 $Me_3Si + (t-Bu)_2C \Longrightarrow CHt-Bu \longrightarrow (t-Bu)_2CCH(t-Bu)SiMe_3$

The $(t-Bu)_2CCH(t-Bu)_2$ radical, 4, was prepared by hydrogen abstraction by t-BuO· from the parent hydrocarbon.³ This radical also decays with first-order kinetics, $\tau_{1/2} = 9.8 \text{ sec at } 25^{\circ}$.

The stability of the foreging radicals decreases from 1 to 4. Radicals 1, 2, and 3 probably decay by $\dot{C}H_3$ elimination from an α -substituent, such a process occurring more readily from t-Bu than from Me₃Si. Radical 4 probably loses a β -(*t*-Bu·). Unless 1 decays by a bimolecular process at high concentrations (i.e., a disproportionation), we see no reason why it should not be isolated if a more convenient source is discovered.

The epr parameters of 1, 2, 3, and 4 are listed in Table I. Values of $a^{H\beta}$ are so low that they are within the line width for 2, 3, and 4. That is, proton splittings are not completely resolved in these radicals and so they all yield a single line epr spectrum that is flanked only by the appropriate ¹³C and/or ²⁹Si satellites. Only for radical 1 are the protons on the α -substituents fully resolved (see Figure 1). The principal multiplet of 1 can be reproduced extremely well by computer simulation using at least four combinations of proton coupling constants, a line width $(\Delta H_{pp}) = 0.1$ G, and a^{13C} $(6^{13}C) = 4.88 \text{ G}, viz:$ (i) $a^{\text{H}}(9 \text{ H}) = 0.135, a^{\text{H}}(9 \text{ H}) =$ 0.27, a^{H} (1 H) = 0.675 G; (ii) a^{H} (9 H) = 0.135, a^{H} (9 H) = 0.405 G; (iii) $a^{\text{H}} (10 \text{ H}) = 0.135, a^{\text{H}} (9 \text{ H}) =$ 0.405 G; (iv) a^{H} (9 H) = 0.135, a^{H} (1 H) = 0.27, a^{H} (9 H) = 0.405 G. The hyperfine coupling to the lone β -H must therefore be uniquely small,⁷ and in fact possibility (i) was eliminated by treating $(CD_3)_3Si$ with CH₃CN. The resulting $[(CD_3)_3Si]_2CCH[Si(CD_3)_3]_2$ radical had no resolvable deuteron couplings and the width $(\Delta H_{\rm pp})$ of the principal line was only 0.48 G. The β -H coupling in 1 must therefore be ≤ 0.27 G.

In substituted ethyl radicals, values of $a^{H_{\beta}}$ can be approximately described by the empirical relation,^{2,10} $a^{H\beta} = A + B \cos^2 \theta$, where θ is the angle between $C_{\alpha}2_{p_{\alpha}}$ axis and the C_{α} , C_{β} , H_{β} plane. For the constants, A and B values of 0-5 and 40-45 G have been suggested.¹⁰ The very small value of $a^{H\beta}$ for 1 (and also for 2, 3, and 4) implies that $\theta = 90^{\circ}$ (*i.e.*, $a^{H_{\beta}} = A$).

These radicals must be locked into this conformation by steric factors.^{11,12} The relatively large values of $a^{2^9 \text{Si}\gamma}$ also support this conformational assignment.¹¹ Moreover, since R_{α} and R'_{α} are always magnetically inequivalent, our general failure to resolve splittings due to protons on α -Me₃Si and α -(t-Bu) groups is not surprising.

The variety of ways in which these and other^{2-4,13} long-lived carbon centered radicals (not necessarily containing Me₃Si or t-Bu groups)¹³ can be obtained suggests that they are far more ubiquitous in freeradical chemistry than has previously been supposed.

(9) A. R. Bassindale, A. J. Bowles, M. A. Cook, C. Eaborn, A. Hudson, R. A. Jackson, and A. E. Jukes, *Chem. Commun.*, 559 (1970).
(10) See, e.g., H. Fischer in "*Free Radicals*," Vol. 2, J. K. Kochi, Ed., Wiley, New York, N. Y., 1973, Chapter 19.

(11) For a discussion of the conformational effect in substituted ethyl radicals see ref 2, and references cited therein.

(12) For comparison, the less hindered Me₂CCHMe₂ radical shows a much weaker preference for this conformation (Table I), but the preference does become more pronounced as the temperature is lowered, *i.e.*, $a^{H\beta} = 11.9$ G at 20° and 9.8 G at -120° (in cyclopropane).

(13) D. Griller and K. U. Ingold, unpublished results.

(14) N.R.C.C. Postdoctoral Fellow 1973-1974.

D. Griller,¹⁴ K. U. Ingold*

Division of Chemistry, National Research Council of Canada Ottawa, Ontario, Canada KIAOR9 Received June 4, 1974

Ozonolysis of cis- and trans-Diisopropylethylene with Added Oxygen-18 Acetaldehyde

Sir:

Three proposals for the mechanism of the reaction of ozone with alkenes in solution have received prominent attention: the Criegee mechanism,1 the syn-anti zwitterion mechanisms,^{2,3} and the aldehyde interchange mechanism.⁴ It is well known that aldehydes added to alkene solutions may be incorporated into final ozonides produced via ozonization. The alde-

(1) R. Criegee, Rec. Chem. Progr., 18, 11 (1957).

(2) N. L. Bauld, J. A. Thompson, C. E. Hudson, and P. S. Bailey, J. Amer. Chim. Soc., 90, 1822 (1968).

⁽⁷⁾ The lowest $a^{H\beta}$ for a tetrasubstituted ethyl in solution known to us is 3.68 G for 9,9'-bifluoreny1-9-yl.⁸ The exceptionally low value of $a^{H\beta}$ in 1 may, in part, be a consequence of the known ability of α -silicon substituents to "mop-up" a good deal of electron density.9

⁽⁸⁾ F. A. Neugebauer and R. W. Groh, Tetrahedron Lett., 1005 (1973).

^{(3) (}a) R. P. Lattimer, C. W. Gillies, and R. L. Kuczkowski, *J. Amer. Chem. Soc.*, **95**, 1348 (1973); (b) R. P. Lattimer, R. L. Kuczkowski, and C. W. Gillies, ibid., 96, 348 (1974).

^{(4) (}a) P. R. Story, R. W. Murray, and R. D. Youssefyeh, J. Amer. Chem. Soc., 88, 3144 (1966); (b) R. W. Murray, R. D. Youssefyeh, and P. R. Story, ibid., 89, 2429 (1967).

hydic oxygen atom will appear in the final ozonide at either the ether or a peroxy site. A zwitterion pathway¹⁻³ to ozonide formation will result in incorporation of aldehydic oxygen only at the ether site, while the aldehyde interchange pathway will result in peroxy incorporation.

Several workers have used ¹⁸O-enriched aldehydes as tracers to distinguish between the two basic pathways to ozonide formation. In these studies the ¹⁸O-enriched aldehydes have been added to ozonolysis reaction mixtures, and the site of enrichment of ¹⁸O in the final ozonides produced has been determined either by microwave spectroscopy or mass spectrometry of ozonides or of alcohols obtained by reduction of ozonides. In studies involving low molecular weight alkenes or phenyl alkenes, only ether enrichment has been observed.⁵⁻⁷ In other studies dealing with larger alkyl alkenes, both ether and peroxy incorporation have been reported.8-10

In the first report that indicated substantial ¹⁸O enrichment at the peroxy site, Story, et al.,⁸ added [¹⁸O]acetaldehyde in the ozonolysis of trans-diisopropylethylene. The resultant ¹⁸O-enriched methyl isopropyl ozonide was reduced with lithium aluminum hydride or methyllithium, and the ethanol and isobutyl alcohol produced were analyzed by mass spectrometry. It was concluded that 68% of the methyl isopropyl ozonide produced in one reaction (and 77% in a second trial) was formed by a pathway which placed the ¹⁸O label at a peroxy site. In the present communication we report results which are in disagreement with this conclusion. In our experiments under reaction conditions similar to those employed by Story, et al.,⁸ we have found that most of the ¹⁸O label appears at the ether site in methyl isopropyl ozonide.

Five separate ozonolyses of cis- or trans-diisopropylethylene (99%, Chemical Samples Co.) with added ¹⁸O-enriched acetaldehyde (55.0 \pm 0.3 % by mass spectrometry) were carried out in pentane solvent (99.9%, Chemical Samples Co.). The enriched acetaldehyde had been prepared by exchange with ¹⁸O-enriched water.7

The alkene and aldehyde concentrations and reaction temperatures are given in Table I. Ozone flow rates

Table I. Ozonolyses of Diisopropylethylene with Added Acetaldehyde-18O

· ·	· ·					
Al- kene config- uration (M)	Al- kene concn (M)	Alde- hyde concn (M)	le- Reac- de tion cn temp () (°C)	% total ozonide ¹⁸ O enrich- ment	% ether ozonide ¹⁸ O enrich- ment	
Trans Trans Trans Cis Cis	0.88 0.82 1.94 1.11 0.92	0.58 0.43 1.25 0.68 0.46	78 95 111 78 111	$54.6 \pm 0.4 54.7 \pm 0.2 54.4 \pm 0.4 54.6 \pm 0.5 54.7 \pm 0.3$	$51.3 \pm 1.1 52.1 \pm 0.7 51.0 \pm 1.8 53.0 \pm 0.6 49.0 \pm 0.8$	

(5) S. Fliszár and J. Carles, J. Amer. Chem. Soc., 91, 2637 (1969).
 (6) C. W. Gillies and R. L. Kuczkowski, J. Amer. Chem. Soc., 94, 7609

(1972). (7) C. W. Gillies, R. P. Lattimer, and R. L. Kuczkowski, J. Amer. Chem. Soc., 96, 1536 (1974).

(8) P. R. Story, C. E. Bishop, J. R. Burgess, R. W. Murray, and R. D. Youssefyeh, J. Amer. Chem. Soc., 90, 1907 (1968).

(9) R. W. Murray and R. Hagan, J. Org. Chem., 36, 1103 (1971).

(10) P. R. Story, J. A. Alford, J. R. Burgess, and W. C. Ray, J. Amer. Chem. Soc., 93, 3042 (1971).

employed were ~ 0.13 mmol/min; reactions were carried out to $\sim 80\%$ completion based on alkene. The ozonides were separated from solvent after fast warm-up¹¹ using low temperature vacuum distillation; ozonide products were trapped at -63° . Gas chromatographic techniques were used to separate methyl isopropyl ozonide from diisopropyl ozonide.

Mass spectrometry⁷ was used to determine the site of ¹⁸O-enrichment in the methyl isopropyl ozonide product. An AEI MS-902 mass spectrometer was used with an ionizing voltage of 70 V and a source temperature of 50-80°. The total ¹⁸O enrichment was obtained from the molecular ion. The (MeHCOCH-i-Pr)⁺ ion was observed (loss of O₂) and used to determine the ether ¹⁸O enrichment. Relative intensities of the mass peaks in the regions of interest are given in Table II. The molecular ion $(m/e \ 132)$ and ether frag-

Table II. Relative Intensities of Mass Peaks of Unenriched Methyl Isopropyl Ozonide

				n	1/e				
134	133	132	131	130	102	101	100	99	98
1.0	7.8	100	9.0	0.3	0.1	0.7	8.7	4.0	0.6

ment ion $(m/e \ 100)$ were by no means the strongest peaks in the spectrum. These peaks were much weaker than the fragment ions at m/e 89, 72, 56, and 44. Spectra of ¹⁸O-enriched ozonides were analyzed using procedures described previously.7 The total and ether ¹⁸O enrichments for the various ozonide samples are given in Table I. The uncertainties listed were determined from at least ten traces for the 134/132 (parent ion) pairs, while at least 20 traces were analyzed for the weaker 102/100 (MeHCOCH-i-Pr)+ pairs. The standard errors were calculated at the 90% confidence level.

The results in Table I indicate that in each of the ozonolyses studied, nearly all of the 18O enrichment occurs at the ether site. In each trial, however, there is a small difference between the enrichment of the parent ion and the ether fragment ions. One explanation for this difference would be that a small amount of peroxy ¹⁸O incorporation has occurred, either through the aldehyde interchange pathway⁴ or some other mechanism.¹² In support of this explanation, the differences in total vs. ether ¹⁸O enrichment seem statistically significant both individually and collectively for the five runs. Internal checks, such as the good agreement in the total ¹⁸O enrichment for the five trials and the consistent intensity ratios of the 132-100 peaks, are satisfactory. Moreover, in other ozonides similar mass spectral analyses were corroborated by microwave spectroscopy⁷; this lends support to the analysis procedure employed here.

One must be cautious, however, before attaching too great a significance to the small difference in total vs. ether ¹⁸O enrichment. The ether fragment mass peaks are quite weak compared to the parent and several of the major fragment ions.¹³ Also, other peaks of un-

⁽¹¹⁾ R. W. Murray and R. Hagen, J. Org. Chem., 36, 1098 (1971).

⁽¹²⁾ One possibility has been suggested by S. Fliszár and J. Carles, Can. J. Chem., 47, 3921 (1969).

⁽¹³⁾ The weak intensity for the M - 32 ions (and sometimes the parent ions) for heavier aliphatic ozonides has been previously noted by other workers.^{9,14} This is in contrast, however, to the results for ethylene, propylene, and 2-butene ozonides7 which have more prominent parent and M - 32 ions.

known origin occur in the spectra with intensities equal to a few per cent of the ether fragment, and one cannot discount the possibility that the small apparent difference in total vs. ether ¹⁸O enrichment is due to an unknown fragment or impurity in the spectrum. It would require further very careful work to more unambiguously establish whether or not the small apparent peroxy ¹⁸O incorporation is real.¹⁵

In any case, our principal conclusions seem well founded. The mass spectral results show that nearly all of the aldehydic oxygen is incorporated at the ether site in the final ozonide; this supports a zwitterion pathway. The upper limit for processes that produce peroxy ¹⁸O incorporation, such as the aldehyde interchange pathway, is about 10% in our runs.16 These results indicate therefore that such an alternative pathway for the formation of methyl isopropyl ozonide from diisopropylethylene is considerably less important than previously supposed.⁸ The reason that our results differ from those reported earlier by Story, *et al.*,⁸ is not clear. Reaction conditions were similar in both studies. We have, in fact, employed lower reaction temperatures than those used previously, and a nonzwitterion pathway should become more important as the reaction temperature is decreased.¹¹ The notable difference is that our analysis dealt with the ozonides themselves while the previous study determined the ¹⁸O enrichment in alcohols derived from the ozonides; this latter procedure is therefore less direct.¹⁷

Acknowledgment. This work was partially supported by a grant (GP 38750X) from the National Science Foundation. Assistance from Margaret Lathrop Johnson in the mass spectral analyses is appreciated.

(14) M. Bertrand, J. Carles, S. Fliszár, and Y. Rousseau, Org. Mass Spectrom., 9, 297 (1974).

(15) For example, if a small correction (7%) is made to the m/e 100 fragment based on the small peak observed at 98 (loss of H_2O_2), the values for percent ether ¹⁸O enrichment become 53.2, 54.1, 52.8, 55.1, and 50.7%. A difference between total and ether 180 enrichment is then no longer clearly apparent for four runs. We have been reluctant to prefer these values since it is not entirely certain that the small mass 98 peak originates from ozonides. Further work is necessary on this point.

(16) The figure of 10% is estimated from the last run in Table I. Extrapolation of that run to 100 % 18O enrichment in the ozonide leads to about 90 % 18O ether enrichment.

(17) C. E. Bishop and P. R. Story, J. Amer. Chem. Soc., 90, 1905 (1968).

Robert P. Lattimer, Robert L. Kuczkowski*

Department of Chemistry, University of Michigan Ann Arbor, Michigan 48104 Received June 20, 1974

A New Hypothesis Concerning the Reactive Species in Carcinogenesis by 7,12-Dimethylbenz[a]anthracene. The 5-Hydroxy-7,12-dimethylbenz[a]anthracene-7,12-Dimethylbenz[a]anthracen-5(6H)-one Equilibrium

Sir:

Previous attempts^{1,2} to isolate and characterize 5hydroxy-12-methylbenz[a]anthracene (1) and 5-hydroxy-7,12-dimethylbenz[a]anthracene (2) have failed to yield either 1 or 2, although the presence of 1 and 2 was inferred because of conversions of crude reaction products

(1) W. M. Smith, Jr., E. F. Pratt, and H. J. Creech. J. Amer. Chem. Soc., 73, 319 (1951).

(2) Unpublished results in the Ph.D. Thesis of C. C. Davis, Ohio State University, 1966.

into the corresponding amino derivatives by the Bucherer reaction.¹ The formation of **2** on mild acid hydrolysis of 5,6-dihydro-7,12-dimethylbenz[a]anthracene 5,6epoxide (3) was claimed,³ but no melting point or other analytical data on this compound were reported.

In our attempts to prepare 2 we have found that the compound exists as a mixture of 7,12-dimethylbenz[a]anthracen-5(6H)-one (4) and the phenolic tautomer 2. On vacuum sublimation of cis-5,6-dihydro-7,12-dimethylbenz[a]anthracen-5,6-diol⁴ (5) from acidic alumina we obtained a solid sublimate⁵ whose nmr and ir spectra indicated that a mixture (ca. 1:1) of ketonic and phenolic substances was at hand.⁶ This material (m/e)272.1205; calcd 272.1201) gives a red 2,4-DNPH derivative,⁵ mp 229-230° dec, in a sealed capillary, on recrystallization from dioxane. In order to tell whether the 5-keto or 6-keto isomer (or a mixture of the two) was present we synthesized 5-methoxy-7,12-dimethylbenz[a]anthracene (6) (nmr, CDCl₃, (CH₃)₄Si, δ 2.78 (s, 3 H, 7-CH₃), 3.13 (s, 3 H, 12-CH₃), 3.90 (s, 3 H, OCH_3), 6.93 (s, 1 H, 6-H)), by a method somewhat better than that described,¹ and 6-methoxy-7,12-dimethylbenz[a]anthracene⁷ (7), mp 140–141° (δ 3.13 (s, 6 H, 7- and 12-CH₃), 3.83, 3 H, OCH₃), 6.59 (s, 1 H, 5-H)), and cleaved each by heating with sodium ethylmercaptide in dimethylformamide.⁸ The resulting deep red solutions of sodium salts were treated in situ with acetic anhydride to yield 5-acetoxy-7,12-dimethylbenz-[a]anthracene (8),⁵ mp 149–150° (nmr 2.40 (s, 3 H,

(3) S. H. Goh and R. G. Harvey, J. Amer. Chem. Soc., 95, 242 (1973).
(4) R. Criegee, B. Marchand, and H. Wannowius, Justus Liebigs Ann. Chem., 550, 99 (1942); J. W. Cook and R. Schoental, J. Chem. Soc., 170 (1948).

(5) All new compounds gave C and H analyses, ir, mass spectra, and nmr data consistent with the postulated structure.

(6) The distinguishing features of the nmr (CDCl₃, (CH₃)₄Si standard) were a broad singlet at δ 5.38 (rel intensity 19) attributed to OH and a singlet at δ 3.62 (rel intensity, 46) attributed to the methylene adjacent to the carbonyl group. The band at 5.38 disappeared within 1 min when D₂O was added. In one experiment the band at 3.62 disappeared in 40 min when the solution was shaken with $D_2O-K_2CO_3$ solution. The peak at 3.62 reappeared when H_2O was added. In CCl_4 the peaks are at δ 6.17 and 3.67 with relative intensities of 8.6 and 21.2, respectively. In the ir spectrum in CHCl₃, bands at 2.97 μ (OH) and at 5.94 (CO) are noted (3.02 and 5.99 in a KBr pellet).

(7) A description of this work will soon be published.
(8) G. I. Fentrill and R. W. Mirrington, *Tetrahedron Lett.*, 1327 (1970).